Arguing the Primacy of Predation in Determining Species Longevity – Fight Aging!

[ad_1]


Researchers here review a variety of species and conclude that defense against predation is the most important determinant of species longevity. Long-lived species tend to have shells, or fly, or live underground. Evolution will not favor longevity until other factors reduce extrinsic mortality at the hands of predators. After that, proximate biochemical causes of longevity can come into play in what looks to be a wide variety of ways.



Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity, such as body size, slow metabolism, activity of body’s repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features.



In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies.



We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).


Link: https://doi.org/10.1134/S0006297924020111

[ad_2]

Source link

Leave a Comment